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Abstract

New efficient one-pot methodology for the preparative synthesis of b-imidazolylpropionamides was elaborated. It is based on the
addition of imidazole to the activated double bond of the intermediate acrylimidazolide in the reaction between diverse acrylic acids
and different amines promoted by CDI. A set of structurally and functionally diverse b-imidazolylpropionamides was obtained in high
preparative yields.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

b-Imidazolylpropionamides are mimetics of histidine,
possess anticonvulsant activities, and are considered as
promising antiepileptic agents with excellent pharmacoci-
netics.1 These compounds can be prepared through the
acylation of amines by b-imidazolylpropionyl chlorides,2

through the addition of imidazole to acrylamides,3 or via
the alkylation of imidazole by b-chloropropionamides.1b,c

Rather narrow scope, complicated with purification proce-
dures and moderate or low yields limit the use of these
procedures in combinatorial synthesis of diverse drug-like
b-imidazolylpropionamides.

Herein, we report a facile and versatile method for the
synthesis of b-imidazolylpropionamides, which is based
on the one-pot reaction of acrylic acids 1 with amines 2

in the presence of carbonyldiimidazole 3 (CDI) as a con-
densing agent and donor of imidazole.
0040-4039/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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2. Results and discussion

Serendipitously, we found that the reaction of acrylic
acid 1a with benzylamine 2a in the presence of CDI as a
condensing agent4 resulted benzylamide of b-imidazolyl-
propionamide 4a (Scheme 1).

The model experiments revealed that under the reaction
conditions imidazole did not add to the double bond of
benzylacrylamide 5a5 (Scheme 2).
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This indicates that the addition of imidazole to the
acrylic double bond occurs prior to the formation of the
amide bond. It seems plausible that compound 4a is
formed through the reaction of activated intermediate 6
Table 1
Structures,a yields,b melting points,c typical NMR data,d and M+1e for produ
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95 14
with benzylamine. Compound 6 is likely to be formed
through the amidation of acrylic acid with CDI followed
by the addition of imidazole to the acrylic double bond
activated through electronwithdrawing effect of the amide
fragment.

The formation of compound 6 was detected by 1H
NMR spectroscopy of a solution containing acid 1a and
CDI: two triplets of the methylene protons of 6 appeared
instead of the vinyl protons of acrylic acid. This conclusion
is further supported by the following model studies. b-Imi-
cts type 49

p
)

Typical NMR data M+1

il
d = 2.64 (t, 3JHH = 6.3 Hz, 2H, COCH2CH2), 4.22 (t,
3JHH = 6.3 Hz, 2H, COCH2CH2), 4.27 (d, 3JHH = 5.4 Hz, 2H,
CH2NH), 6.88 (s, 1H, CHim.), 7.11 (s, 1H, CHim.), 7.16 (d,
3JHH = 7.2 Hz, 2H, 2CHPh), 7.23 (t, 3JHH = 7.1 Hz, 1H,
CHPh), 7.25 (t, 3JHH = 7.9 Hz, 2H, 2CHPh), 7.58 (s, 1H,
CHim.), 8.48 (br t, 1H)

230

il

d = 2.80 (t, 3JHH = 6.9 Hz, 2H, COCH2CH2), 3.36 (m, 2H,
CH2morph.), 3.42 (m, 2H, CH2morph.), 3.49 (m, 4H, CH2morph.),
4.14 (t, 3JHH = 6.9 Hz, 2H, COCH2CH2), 6.84 (s, 1H, CHim.),
7.15 (s, 1H, CHim.), 7.60 (s, 1H, CHim.)

210

7

d = 2.89 (br t, 2H, COCH2CH2), 4.27 (t, 3JHH = 6.2 Hz, 2H,
COCH2CH2), 6.87 (s, 1H, CHim.), 7.18 (m, 2H, CHim., CHPh),
7.18 (t, 3JHH = 7.2 Hz, 1H, CHPh), 7.46 (d, 3JHH = 7.2 Hz,
1H, CHPh), 7.63 (m, 2H, CHim., CHPh), 9.62 (s, 1H, NH)

250

0

d = 1.06 (d, 3JHH = Hz, 6H, CH(CH3)2), 2.80 (t,
3JHH = 6.1 Hz, 2H, COCH2CH2), 2.95 (m, 1H, CH(CH3)2),
4.26 (t, 3JHH = 6.1 Hz, 2H, COCH2CH2), 6.88 (s, 1H, CHim.),
7.14 (m, 4H, CHim., 3CHPh), 7.28 (d, 3JHH = 7.6 Hz, 1H,
CHPh), 7.59 (s, 1H, CHim.), 9.41 (s, 1H, NH)

258

2

d = 1.01 (br t, 6H, CH3CH2), 2.83 (br t, 2H, COCH2CH2),
3.13 (br q, 4H, 2CH3CH2), 4.27 (br t, 2H, COCH2CH2), 8.85
(s, 1H, CHim.), 7.14 (s, 1H, CHim.), 7.42 (d, 3JHH = 7.0 Hz,
1H, CHPh), 7.50 (t, 3JHH = 7.0 Hz, 1H, CHPh), 7.60 (s, 1H,
CHPh), 7.73 (d, 3JHH = 7.0 Hz, 1H, CHPh), 8.09 (s, 1H,
CHim.), 10.32 (s, 1H, NH)

351



Table 1 (continued)

Entry Acid Amine Product Yield
(%)

Mp
(�C)

Typical NMR data M+1
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98 208

d = 3.01 (t, 3JHH = 6.5 Hz, 2H, COCH2CH2), 4.32 (t,
3JHH = 6.5 Hz, 2H, COCH2CH2), 6.86 (s, 1H, CHim.),
7.14 (s, 1H, CHim.), 7.27 (t, 3JHH = 7.3 Hz, 1H,
CHbenzotiazol), 7.41 (t, 3JHH = 7.3 Hz, 1H, CHbtz), 7.62
(s, 1H, CHim.), 7.71 (d, 3JHH = 7.3 Hz, 1H, CHbtz),
7.94 (d, 3JHH = Hz, 1H, CHbtz), 12.6 (br s, 1H, NH)
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Ph
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94 Oil

d = 1.41 (d, 3JHH = 6.7 Hz, 3H, CH3CH), 2.61 (m, 2H,
CH2CH), 4.17 (dd, 3JHH = 5.5 Hz, 2JHH = 15.1 Hz,
1H, CH2NH), 4.25 (dd, 3JHH = 5.5 Hz,
2JHH = 15.1 Hz, 1H, CH2NH), 4.69 (m, 1H, CH2CH),
6.88 (s, 1H, CHim.), 7.07 (d, 3JHH = Hz, 2H, 2CHPh),
7.08 (m, 2H, CHim., CHPh), 7.24 (m, 2H, 2CHPh), 7.63
(s, 1H, CHim.), 7.41 (br t, 1H)

244

8 1b 2f
S

N

N

N

N
H

O

4h 

97 193

d = 1.48 (d, 3JHH = Hz, 3H, CH3CH), 3.04 (m, 2H,
CH2CH), 4.82 (m, 1H, CH3CH), 6.87 (s, 1H, CHim.),
7.24 (s, 1H, CHim.), 7.27 (t, 3JHH = 7.7 Hz, 1H, CHbtz),
7.40 (t, 3JHH = 7.7 Hz, 1H, CHbtz), 7.7 (m, 2H, CHbtz,

CHim.), 7.93 (d, 3JHH = 7.7 Hz, 1H, CHbtz), 12.44 (s,
1H, NH)

287

9 1b 2g

NN N N
H

O

4i 

79 Oil

d = 1.44 (d, 3JHH = 6.7 Hz, 3H, CH3CH), 2.84 (dd,
3JHH = 8.1 Hz, 2JHH = 15.1 Hz, 1H, CH2CH), 2.97
(dd, 3JHH = 8.1 Hz, 2JHH = 15.1 Hz, 1H, CH2CH),
4.77 (m, 1H, CH3CH), 6.87 (s, 1H, CHim.), 7.05 (t,
3JHH = 8.0 Hz, 1H, CHPy), 7.21 (s, 1H, CHim.), 7.71 (s,
1H, CHim.), 7.73 (t, 3JHH = 8.0 Hz, 1H, CHPy), 8.01 (d,
3JHH = 8.0 Hz, 1H, CHPy), 8.27 (d, 3JHH = 4.0 Hz,
1H, CHPy), 10.54 (s, 1H, NH)

231

10 1b
N NHPh

2h 

N

N
N

O

N Ph

4j 

90 Oil

d = 1.42 (d, 3JHH = 6.5 Hz, 3H, CH3CH), 2.81 (dd,
3JHH = 5.5 Hz, 2JHH = 15.9 Hz, 1H, CH2CH), 2.87
(dd, 3JHH = 5.5 Hz, 2JHH = 15.9 Hz, 1H, CH2CH),
2.96 (m, 2H, CH2 pipi), 3.08 (m, 2H, CH2 pipi), 3.53 (m,
4H, CH2 pipi), 4.68 (m, 1H, CH3CH), 6.79 (t,
3JHH = 7.1 Hz, 1H, CHPh), 6.83 (s, 1H, CHim.), 6.92
(d, 3JHH = 8.2 Hz, 2H, 2CHPh), 7.21 (m, 3H, 2CHPh,
CHim.), 7.65 (s, 1H, CHim.)

299

11 1b

NH2

MeO

2i

N

N
N
H

O

OMe

4k 

80 Oil

d = 1.44 (d, 3JHH = 6.7 Hz, 3H, CH3CH), 2.77 (m, 2H,
CH2CH), 3.68 (s, 3H, OCH3), 4.76 (m, 1H, CH3CH),
6.84 (d, 3JHH = 8.9 Hz, 2H, 2CHPh), 6.88 (s, 1H,
CHim.), 7.22 (s, 1H, CHim.), 7.43 (d, 3JHH = 8.9 Hz,
2H, 2CHPh), 7.69 (s, 1H, CHim.), 9.88 (s, 1H, NH)

260

12 1b

NH2

Cl

2j 

ClN

N
N
H

O

4l 

88 123

d = 1.44 (d, 3JHH = 6.6 Hz, 3H, CH3CH), 2.79 (d,
3JHH = 7.0 Hz, 2H, CH2CH), 4.74 (m, 1H, CH3CH),
6.85 (s, 1H, CHim.), 7.21 (s, 1H, CHim.), 7.31 (d,
3JHH = 8.3 Hz, 2H, 2CHPh), 7.53 (d, 3JHH = 8.3 Hz,
2H, 2CHPh), 7.65 (s, 1H, CHim.), 10.08 (s, 1H, NH)

264

(continued on next page)
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Table 1 (continued)

Entry Acid Amine Product Yield
(%)

Mp
(�C)

Typical NMR data M+1

13 OH
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N

N
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O

Ph

N

4m 

65 Oil

d = 1.60 (s, 6H, 2CH3), 2.67 (s, 2H, CH2(CH3)2),
4.21 (d, 3JHH = 5.7 Hz, 2H, CH2NH), 6.89 (s,
1H, CHim.), 7.13 (d, 3JHH = 7.3 Hz, 2H, 2CHPh),
7.14 (m, 4H, CHim., 3CHPh), 7.71 (s, 1H, CHim.),
8.36 (br t, 1H, NH)

258

14 1c 2h N

N

N

O

N
Ph

4n 

73 149

d = 1.64 (s, 6H, CH2(CH3)2), 2.88 (s, 2H,
CH2(CH3)2), 2.98 (m, 4H, 2CH2 pipi), 3.40 (m,
2H, CH2 pipi), 3.51 (m, 2H, CH2 pipi), 6.78 (t,
3JHH = 7.1 Hz, 1H, CHPh), 6.85 (s, 1H, CHim.),
6.90 (d, 3JHH = 8.2 Hz, 2H, 2CHPh), 7.20 (t,
3JHH = 8.2 Hz, 2H, 2CHPh), 7.29 (s, 1H, CHim.),
7.71 (s, 1H, CHim.)

313

15 OH

O

1d 

2a N N N
H

O

Ph

4o 

95 90

d = 1.02 (d, 3JHH = 6.7 Hz, 3H, CH3CH), 2.79
(m, 1H, CH3CH), 3.93 (dd, 3JHH = 5.7 Hz,
2JHH = 13.4 Hz, 1H, CH2CH), 4.14 (dd,
3JHH = 5.7 Hz, 2JHH = 13.4 Hz, 1H, CH2CH),
4.19 (dd, 3JHH = 6.0 Hz, 2JHH = 15.1 Hz, 1H,
CH2NH), 4.27 (dd, 3JHH = 6.0 Hz,
2JHH = 15.1 Hz, 1H, CH2NH), 6.86 (s, 1H,
CHim.), 7.04 (s, 1H, CHim.), 7.08 (d,
3JHH = 7.4 Hz, 2H, 2CHPh), 7.20 (t,
3JHH = 7.1 Hz, 1H, CHPh), 7.27 (t,
3JHH = 7.4 Hz, 2H, 2CHPh), 7.52 (s, 1H, CHim.),
8.40 (br t, 1H)

244

16 1d 2h

N

N
N

O

N Ph

4p 

90 85

d = 0.99 (d, 3JHH = 6.3 Hz, 3H, CH3CH), 2.91
(m, 2H, CH2 pipi), 3.07 (m, 2H, CH2 pipi), 3.35 (m,
1H, CH3CH), 3.53 (m, 3H, 3 CH pipi), 3.62 (m,
1H, CH pipi), 3.97 (dd, 3JHH = 8.4 Hz,
2JHH = 13.3 Hz, 1H, CH2CH), 4.14 (dd,
3JHH = 8.4 Hz, 2JHH = 13.3 Hz, 1H, CH2CH),
6.79 (t, 3JHH = 7.1 Hz, 1H, CHPh), 6.80 (s, 1H,
CHim), 6.89 (d, 3JHH = 8.2 Hz, 2H, 2CHPh), 7.13
(s, 1H, CHim), 7.20 (d, 3JHH = 8.2 Hz, 2H,
2CHPh), 7.56 (s, 1H, CHim)

299

17 OH

O

1e 

2h N

N
N

O

N Ph

4q 

88 Oil

d = 0.66 (t, 3JHH = 7.2 Hz, 3H, CH3CH2), 1.75
(m, 2H, CH3CH2), 2.82 (dd, 3JHH = 5.5 Hz,
2JHH = 15.9 Hz, 1H, CH2CH), 2.95 (m, 3H,
CH2CH, CH2 pipi), 3.09 (m, 2H, CH2 pipi), 3.54
(m, 4H, 2CH2 pipi), 4.44 (m, 1H, CH2CH), 6.78 (t,
3JHH = 7.1 Hz, 1H), 6.85 (s, 1H, CHim.), 6.91 (d,
3JHH = 7.9 Hz, 2H, 2CHPh), 7.20 (m, 3H, 2CHPh,
CHim.), 7.63 (s, 1H, CHim.)

313

18 1e

NH2

MeO

2k

N

N

N
H

O

OMe

4r 

86 Oil

d = 0.62 (t, 3JHH = 7.1 Hz, 3H, CH3CH2), 1.71
(m, 2H, CH3CH2), 2.62 (d, 3JHH = 7.1 Hz, 2H,
CH2NH), 3.55 (s, 3H, OCH3), 4.06 (dd,
3JHH = 5.5 Hz, 2JHH = 14.8 Hz, 1H, CH2CH),
4.16 (dd, 3JHH = 5.5 Hz, 2JHH = 14.8 Hz, 1H,
CH2CH), 4.45 (m, 1H, CH2CH), 6.80 (d,
3JHH = 8.2 Hz, 2H, 2CHPh), 6.88 (s, 1H, CHim.),
6.95 (d, 3JHH = 8.2 Hz, 2H, 2CHPh), 7.13 (s, 1H,
CHim.), 7.58 (s, 1H, CHim.), 8.28 (br r, 1H, NH)

288
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Table 1 (continued)

Entry Acid Amine Product Yield
(%)

Mp
(�C)

Typical NMR data M+1

19 1f

NH2

2l 

N

N
N
H

O

Ph

4s 

56 195

d = 2.21 (s, 3H, CH3Ph), 3.25 (dd, 3JHH = 6.2 Hz,
2JHH = 15.2 Hz, 1H, CH2CH), 3.35 (dd, 3JHH = 9.3 Hz,
2JHH = 15.2 Hz, 1H, CH2CH), 5.89 (m, 1H, CH2CH), 6.88
(s, 1H, CHim.), 7.06 (d, 3JHH = 7.9 Hz, 2H, 2CHPh), 7.29
(m, 2H, CHim., CHPh), 7.37 (m, 6H, (2+4)HPh), 7.81 (s, 1H,
CHim.), 9.95 (s, 1H, NH)

336

a Satisfactory microanalysis obtained C ± 0.33; H ± 0.45; N ± 0.25.
b Yields refer to pure isolated product. According to HPLC MS data all the synthesized compounds have purity >95%.
c Melting points were measured with a Buchi melting points apparatus and are uncorrected.
d 1H NMR (500 MHz) were recorded on a Varian Mercury-400 and Bruker Avance DRX 500 spectrometers with TMS as an internal standard in

DMSO-d6.
e LC/MS spectra were recorded using chromatography/mass spectrometric system that consists of high-performance liquid chromatograph ‘Agilent

1100 Series’ equipped with diode-matrix and mass-selective detector ‘Agilent LC/MSD SL’.
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dazolylpropionic acid 7a6 did not react with benzylamine
2a in the presence of CDI (under the acylation conditions
of 1a). This can be explained by low activity of the zwitter-
ionic structure of acid 7a (Scheme 3).

On the basis of the results described above we have
found the conditions for the one-pot synthesis of structur-
ally and functionally diverse compounds 4. Equimolar
amount of CDI was added to the DMF solution of acids
1a–e and the reaction mixture was being heated at 70 �C
for 2 h to ensure the formation of intermediate 6. The latter
was reacted with equimolar amount of amines 2a–e at
100 �C (6 h) to give target compounds 4a–r in 84–99%
yields. Compounds 4a–r could be easily isolated in pure
form by precipitation or extraction.7

In the case of cinnamic acid 1f, the yields of compounds
4 were considerably lower (55–60%)8 most probably due to
the lower activity of the allylic double bond conjugated
with the phenyl ring (Scheme 4, Table 1).

The composition and structure of all the compounds
were established through LC/MS, elemental analysis, 1H
and 13C NMR spectroscopy. The 1H NMR of compounds
contained one set of signals for the imidazole protons and
two characteristic signals for a- and b-protons of the pro-
pionyl fragment.
3. Conclusion

Acrylic acids react with CDI to give active intermediate
that can be readily transformed into various b-imidazolyl-
propionamides through the amidation with primary and
secondary amines. The elaborated one-pot methodology
is applicable to a variety of substituted acrylic acids and
amines and affords structurally and functionally diverse
target compounds in high preparative yields.
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49.0, 56.7, 116.3, 117.7, 119.8, 128.4, 129.5, 135.5, 151.2, 167.8; 4o:
d = 16.0, 42.0, 42.5, 49.4, 120.0, 127.2, 127.5, 128.6, 128.7, 137.9, 139.7,
173.6; 4p: d = 15.7, 36.9, 41.5, 45.1, 48.7, 49.2, 49.7, 116.3, 119.8, 120.2,
128.6, 129.5, 138.1, 151.2, 172.3; 4q: d = 10.8, 28.7, 38.9, 41.4, 45.2,
48.8, 49.1, 56.4, 116.3, 117.9, 119.8, 128.8, 129.4, 137.4, 151.2, 168.4; 4r:
d = 10.7, 28.7, 41.9, 42.0, 55.56, 56.52, 114.1, 117.9, 128.8, 131.6, 133.1,
137.2, 158.7, 169.4; 4s: d = 20.9, 42.3, 57.6, 119.5, 119.7, 126.9, 128.4,
129.0, 129.2, 129.6, 132.8, 136.8, 137.0, 141.0, 167.6. 13C NMR
(125 MHz) were recorded on a Bruker Avance DRX 500 spectrometer
with TMS as an internal standard.
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